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SUMMARY

Case—control studies can often be made more efficient by using frequency matching, randomized
recruitment, stratified sampling, or two-stage sampling. These designs share two common features:
(1) some ‘‘first-stage’” variables are ascertained for all study subjects, while complete variable
ascertainment is carried out for only a selected subsample, and (2) the subsampling of subjects for
“‘second-stage’ variable ascertainment depends jointly on their disease status and their observed
first-stage variables. Because first-stage variables alter the subsampling fractions, standard analyses
require a multiplicative specification of any joint effects of a second- and a first-stage variable, We
show that by making use of missing data methods, maximum likelihood estimates ¢can be obtained
for risk parameters of interest, even those characterizing interactions between first- and second-
stage variables. Joint effects can thus be modelled flexibly, with allowance for both additive and
multiplicative models. Preliminary data from a case- control study of lung cancer as related to age,
sex, and smoking provide an example, leading to the suggestion that the combined effect of age and
smoking is multiplicative.

1. Introduction
The case-control study can offer marked efficiency advantages over a prospective study when the
disease outcome of interest is rare (Breslow and Day, 1980). This design, also known as “choice-
based sampling’’ in econometrics, calls for separate sampling among cases and among members of
the same population who are free of the disease of interest. Four ‘‘complex sampling’’ strategies
have been developed in which the sampling depends not only on disease status but alsc on other
factors. These are: frequency matching, randomized recruitment, stratified sampling, and two-stage
sampling. These designs have two important features in common. First, all are two-stage in the
sense that some variables (to be referred to as “‘first-stage variables™) are ascertained for all
participants, and others (‘‘second-stage variables™) are gathered only for random subsamples.
Second, the selection of subjects for second-stage variable ascertainment depends on their disease
status and their observed first-stage variables. '
While these designs can improve efficiency, they have imposed unacceptable constraints on the
investigator who is interested either in main effects for first-stage variables or in interactions
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between first- and second-stage variables: the usual analyses require a multiplicative (logistic) model
(Breslow and Day, 1980). In this paper we propose a general maximum likelihood approach to
analysis of case—control studies with complex sampling. Our approach allows efficient inference
regarding both first- and second-stage variables, and frees the investigator from the need to assume
a multiplicative model. We begin by briefly reviewing the four sampling paradigms.

Frequency matching can enhance efficiency in a case—-control study when there is a variable that
is readily ascertained and also strongly related to risk of the disease under study (Kleinbaum,
Kupper, and Morgenstern, 1982). Such a variable can be determined during the first stage, for
example, based on a brief, preliminary screening interview. Age and sex are typical matching
factors. In frequency matching, the empirical distributions of the matching factors are constrained
to be the same for cases and controls, by requiring the number of controls selected for a given
stratum to be a fixed multiple of the number of cases observed in that stratum. In standard analyses
(Breslow and Day, 1980), only subjects in the second-stage subsample are included in the analysis,
whereas those with only first-stage data, i.e., those who were screened but not enrolled for full
participation in the study, are ignored. Although it remains a popular strategy, matching has been
criticized because of the associated practical difficulties and because it is presumed that one can
neither estimate the effects of matching factors nor model the interaction between the exposure of
interest and a matching variable in any way but multiplicatively (Thomas and Greenland, 1985).

Weinberg and Wacholder (1990; see also Weinberg and Sandler (1991)) proposed a different
design, termed ‘‘randomized recruitment’” (originally, ‘‘biased sampling’’), that overcomes some of
the practical problems associated with frequency matching and also allows for a more flexible
analysis. In this approach, the selection of each potential participant for further study is determined
randomly, based on Bernoulli sampling probabilities which are set by the investigator and may
depend on both disease status and the person’s first-stage information ascertained at screening. This
design is being used in a case—control study of lung cancer and exposure to radon gas. Randomized
recruitment allows us to oversample nonsmoking cases and match controls to cases on cigarette
smoking, thereby enhancing efficiency, without the need to assume that the joint effects of smoking
and radon exposure are multiplicative (Weinberg and Sandler, 1991).

Other efficient designs have been proposed for special circumstances. Fears and Brown (1986; see
also Breslow and Zhao, 1988) considered stratified sampling in a case-control study. In their
example, information on disease status was known for everyone in each of several cities. Thus city
of residence was the first-stage variable. Covariate information (second-stage) was then obtained on
within-city samples of cases and controls, but the variable of primary interest was an exposure level
that was specific to each city. They proposed a method for logistic modelling that takes the unequal
sampling fractions into account and estimates the effect of the stratum-associated exposure variable.

White (1982; see also Walker, 1982) and Breslow and Cain (1988) considered a design that they
termed ‘‘two-stage’ sampling. Here information on an exposure was assumed known for a large
sample of cases and controls. White showed that efficiency can be enhanced by limiting ascertain-
ment of covariate information to subsamples within the disease-by-exposure categories. Breslow
and Cain described a maximum conditional pseudo-likelihood approach to logistic analysis for this
two-stage design.

For each of these four designs second-stage covariates are missing by design for some individuals
and can be considered to be “‘missing at random”” in the sense of Little and Rubin (1987, p. 90). The
purpose of this paper is to propose a unified maximum likelihood approach to analysis that fully
exploits the first-stage data and is easy to implement using available software, such as Generalized
Interactive Linear Modelling (GLIM, Baker and Nelder, 1978). We shall show that one can estimate
effects of first-stage factors and fit nonmultiplicative models for the inieraction between a first- and
a second-stage factor, provided one uses the data available for potential subjects who were screened
but not enrolled for the second stage of the study.

The paper is organized as follows. The second section scts up the notation and appropriate
likelihoods. The third describes the implementation of the expectation-maximization (EM) algo-
rithm as described by Dempster, Laird, and Rubin (1977). The fourth applies the method to
preliminary data available on age, sex, and smoking history for subjects screened for participation
in a case—control study of lung cancer and radon.

2. The Observed-Data and Complete-Data Likelihoods

To simplify the notation and the presentation, we assume that there are two categorical covariate
vectors, Z,, and Z,, corresponding to first- and second-stage data, respectively. We assume that
subjects are sampled randomly for ascertainment of Z, within each stratum defined by disease status
and Z,, although the subsampling fractions may vary across disease status and Z.. The first-stage
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between first- and second-stage variables: the usual analyses require a multiplicative (logistic) model
(Breslow and Day, 1980). In this paper we propose a general maximum likelihood approach to
analysis of case-control studies with complex sampling. Qur approach allows efficient inference
regarding both first- and second-stage variables, and frees the investigator from the need to assume
a multiplicative model. We begin by briefly reviewing the four sampling paradigms.

Frequency matching can enhance efficiency in a case~control study when there is a variable that
is readily ascertained and also strongly related to risk of the disease under study (Kleinbaum,
Kupper, and Morgenstern, 1982). Such a variable can be determined during the first stage, for
example, based on a brief, preliminary screening interview. Age and sex are typical matching
factors. In frequency matching, the empirical distributions of the matching factors are constrained
to be the same for cases and controls, by requiring the number of controls selected for a given
stratum to be a fixed multiple of the number of cases observed in that stratum. In standard analyses
{Breslow and Day, 1980}, only subjects in the second-stage subsample are included in the analysis,
whereas those with only first-stage data, i.e., those who were screened but not enrolled for full
participation in the study, are ignored. Although it remains a popular strategy, matching has been
criticized because of the associated practical difficuities and because it is presumed that one can
neither estimate the effects of matching factors nor model the interaction between the exposure of
interest and a matching variable in any way but multiplicatively (Thomas and Greenland, 1985).

Weinberg and Wacholder (1990; see also Weinberg and Sandler (1991)) proposed a different
design, termed ‘‘randomized recruitment’” (originally, *‘biased sampling™’}, that overcomes some of
the practical problems associated with frequency matching and also allows for a more flexible
analysis. In this approach, the selection of each potential participant for further study is determined
randomly, based on Bernoulli sampling probabilities which are set by the investigator and may
depend on both disease status and the person’s first-stage information ascertained at screening. This
design is being used in a case~control study of lung cancer and exposure to radon gas, Randomized
recruitment allows us to oversample nonsmoking cases and match controls to cases on cigarette
smoking, thereby enhancing efficiency, without the need to assume that the joint effects of smoking
and radon exposure are multiplicative (Weinberg and Sandler, 1991),

Other efficient designs have been proposed for special circumstances. Fears and Brown (1986; see
also Breslow and Zhao, 1988) considered stratified sampling in a case-control study. In their
example, information on disease status was known for everyone in each of several cities. Thus city
of residence was the first-stage variable. Covariate information (second-stage) was then obtained on
within-city samples of cases and controls, but the variable of primary interest was an exposure level
that was specific to each city. They proposed a method for logistic modelling that takes the unequal
sampling fractions into account and estimates the effect of the stratum-associated exposure variable.

White (1982; sec also Walker, 1982) and Breslow and Cain (1988) considered a design that they
termed *‘two-stage” sampling. Here information on an exposure was assumed known for a large
sample of cases and controls. White showed that efficiency can be enhanced by limiting ascertain-
ment of covariate information to subsamples within the disease-by-exposure categories. Breslow
and Cain described a maximum conditional pseudo-likelihood approach to logistic analysis for this
two-stage design.

For each of these four designs second-stage covariates are missing by design for some individuals
and can be considered to be ‘‘missing at random’" in the sense of Little and Rubin (1987, p. 90). The
purpose of this paper is to propose a unified maximum likelihood approach to analysis that fully
exploits the first-stage data and is easy to implement using available software, such as Generalized
Interactive Linear Modelling (GLIM, Baker and Nelder, 1978). We shall show that one can estimate
effects of first-stage factors and fit nonmultiplicative models for the interaction between a first- and
a second-stage factor, provided one uses the data available for potential subjects who were screened
but not enrclled for the second stage of the study.

The paper is organized as follows. The second section sets up the notation and appropriate
likelihoods. The third describes the implementation of the expectation—maximization (EM) algo-
rithm as described by Dempster, Laird, and Rubin (1977). The fourth applies the method to
preliminary data available on age, sex, and smoking history for subjects screened for participation
in a case~control study of lung cancer and radon.

2, The Observed-Data and Complete-Data Likelihoods

To simplify the notation and the presentation, we assume that there are two categorical covariate
vectors, Z,, and Z,, corresponding to first- and second-stage data, respectively. We assume that
subjects are sampled randomly for ascertainment of Z, within each stratum defined by disease status
and Z,, although the subsampling fractions may vary across disease status and Z.. The first-stage
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variable, 7, could be stratum (in stratified sampling), Or €Xposure level (in two-stage sampling), or
cross-categorized level of some set of matching variables (in frequency matching or randomized
recruitment). Let n;, denote the number of people with complete covariate status known, who are
at level i of disease, D, level j of Z, (where j indexes the vector among all possible realizations), and
level k of Z,. For ease of notation we shall adopt the convention Z, = j to mean that the vector Z,
is at its jth level. We employ dot notation, so that n;, denotes summation over k. The uppercase N
will refer to all subjects sampled, whether or not they had Z, ascertained. Thus N, is the number of
subjects with disease category i who were at the jth level of the first-stage variable. Note that N, is
larger than n;  with this notation.

5 | The Likelihood for Two-Stage, Frequency-Matched, or Randomized Recruitment Designs
The observed-data likelihoods for two-stage, frequency-matched, or randomized recruitment de-
signs all take the following form:

] { T1 pe(@, = jip = i)V || TL Pr(Za = kD = i, 21 =)™ } (1

J ik

The leftmost factor corresponds to the first-stage data gathered for all participants, which is simply

. multinomial within each disease category. The rightmost factor corresponds to second-stage data,

-

again multinomial within each D-by-Z, category.
If the data were complete, so that the level of Z, were known for all study subjects, then the
likelihood (1) would reduce to the retrospective form of the case—control likelihood:

T PHZ; = . 2o = KD = D", (1.1
i.j.k

where hj; denotes the unknown (hypothetical) number with D = i, Z, = j, and Z, = k.

We assume the general multiplicative-intercept model for Pr(D = i|Z, = Jj, £, = k), as described
by Hsieh, Manski, and McFadden (1985). Under this model Pr(D = 1|Z,, Z,)/Pr(D = 0|Z,, Z,), the
disease odds, is #f (Z,, Z,): p) for some positive scalar r, function f, and vector B. Inference about
B can be validly carried out [Anderson (1979), as extended by Weinberg and Wacholder (1993)] by
restricting attention to the prospective form:

Mep=iz, =j, 2, = k)it (1.2)
ij.k

The sufficient statistics are the frequencies, h;, and the expectation-maximization (EM) algorithm
will be applied in Section 3 to maximize the observed-data likelihood (1}.

2.3. The Likelihood for a Stratified Sampling Design

The observed-data likelihood is slightly different for the stratified sampling design because there is
a complete enumeration of D status within each level of Z,. As before, Z, status is ascertained for
random subsamples conditional on D and Z,. The likelihood is

II { {1 pe(p = itz = N || TT Pr(Za = KD =i, 2y =)™ } )
Jj i ik

With complete data, the likelihood (2) would become

Tl Pr(@; =k, D =ilZy =)™
i,k

or, rewritten in prospective form:
[ﬂ Pr(D = i{Z, = j, %y = k)’lvk“l—[ Pr(Z, = k|Z, =J')h"'“l~ (2.1
i,jk ik

The nuisance parameters, specifying the distribution of Z, conditional on Z,, can be ignored and
inference carried out based on the prospective factor alone, as if the populations had been studied
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3. Application of the EM Algorithm . .

For each of the four complex-sampling scenarios, the observed-data likelihood can be maximized by
considering the resulting data structure in the context of a missing data problem, as described by
Dempster et al. (1977), where data are missing at random. In each design the level of Z, is missing
for people who provide only the marginal, first-stage data.

The expectation-maximization (EM) algorithm can be used to maximize (1) and (2). In the E step
the complete-data sufficient statistics, /i, are replaced by their expectations conditional on the
observed data and the current estimates of the parameters of the risk model. To calculate these
expectations, first define m; = N; - n,; , i.e., the number of subjects with D = i, and Z, = j who
are missing Z,. Then set

i

ﬁ,:,-,‘, = E(hylng, mi. B) = ngr + myPr(Z, = kiD =i, Z, = )

Pr(D = ilZ, = j, Z, = WPr(Z, = k|Z; = )

= njjg Fomg oy
2, Pr(D=iZ; = j, Zy = r\Pr(Z, = r|Z, =)

~ : . h i

PI‘(D = l|Z] =j, &y = k)r

= Ry tmy; ;l )
3, PrD = ilZ) =j, 2, = g™

J.

=ng +m Fuk
ijk i s, Fi 4
where F;, denotes the current estimate of the fitted value for the ijkth cell. Thus the E step
reestimates the complete data as the sum of the observed frequency, n,,, and a fraction of the
missing data, my;, where the fraction of the missing-data people assigned to a given level of Z, is the
relative magnitude of the fitted value for that cell.
The maximization (M) step then maximizes the likelihood, as if the frequencies estimated in the
E step were the complete data from this case—control study. Standard software can be used. Alternation
of the E and the M steps leads to convergence to the maximum of the observed-data likelihood
(Dempster et al., 1977). Of course, the log-likelihoods based on the estimated data are incorrect, and
routines must be written for computing the likelihood appropriate to the observed data.

4. Example: Age, Sex, Smoking, and Lung Cancer

Randomized recruitment is being used in an ongoing case—control study of residential exposure to
the radioactive gas, radon, and lung cancer, being carried out at two locations: Utah/southern Idaho
and Connecticut. The objectives of the study are to determine whether residential exposure to radon
increases the risk of lung cancer and to characterize the joint effects of radon and cigarette smoking
in causing the disease. Radon dosimetry requires measurements in current and former residences,
which is much more costly than asking about the known strong risk factors, age and smoking status,
in an interview. Randomized recruitment should greatly enhance efficiency in this setting (Weinberg
and Sandler, 1991).

We begin by briefly describing the sampling process. Controls younger than 65 are identified
through random digit dialing (RDD) (see Wacholder, 1992), and those over 65 are sampled at random
from Health Care Financing Administration (HCFA) lists. (The HCFA maintains lists of residents
for Medicare compensation, which are considered to be virtually complete for those over 65.) After
age and sex have been ascertained, a potential control is recruited for further participation if a
generated uniform random number falls below the chosen sampling probability. See Weinberg and
Sandler (1991) for tables of probabilities. This achieves approximate matching of controls to cases
in their age/sex distribution. Potential controls who pass the initial age/sex randomization test are
next assigned, based on a brief interview, to one of four smoking categories, depending on their
behavior 10 years prior to interview, as follows: never-smoker, ex-smoker, light smoker (fewer than
20 cigarettes a day), or heavy smoker (20 or more cigarettes a day). A second randomization is
applied to cases and controls based on smoking status, in order to oversample nonsmoking cases and
match controls to cases in their smoking histories. Radon dosimetry is attempted only for subjects
who pass both randomization tests.

Preliminary screening results from Utah/southern Idaho will be used to illustrate the method. We
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have age and sex data for a large group of potential participants but have only smoking status for a
much reduced subsample. No radon data are available yet. We shall focus on the joint effects of age
and smoking. The final analysis to be performed will be similar, but will focus instead on the
combined effects of radon (a third-stage variable) and smoking (a second-stage variable).

Tables 1a and 1b show the data, including the marginal data shown in the rightmost column
labelled ‘‘undetermined’’ for subjects for whom we know age and sex, but not smoking history.
Note that many controls are missing data by design.

Table 1
Age and smoking status for cases and controls
. Smoking  __
 Age Cancer  Never  Exsmoker  Light  Heavy  Undetermined
a. Females
40-59 Yes 7 3 15 34 8
No 320 26 31 37 2,324
60-64 Yes 6 0 10 22 7
No 135 10 i1 17 295
65-69 Yes 7 6 2 34 15
No 228 26 12 18 863
70-74 Yes 6 3 1 28 7
No 214 i8 12 16 859
75-79 Yes 8 7 8 7 10
No 156 1t 11 0 660
b. Males
40-59 Yes 6 2 6 73 13
No 385 127 47 121 1,909
6064 Yes 2 7 7 65 16
No 210 99 22 67 39
65-69 Yes 7 18 10 63 25
No 240 136 3 75 528
70-74 Yes 8 25 16 54 28
No 289 164 26 62 362
75-79 Yes 7 17 11 25 17
No 195 119 11 25 287

The analysis was carried out for three different models, each assuming binomial errors: the linear
logistic, the odds-linear, and the purely additive. We assume the following generalized linear modet
form (McCullagh and Nelder, 1989):

g[Pr(D = 1jage group =i, sex =J, smoking category = k)] =p +o; + B; t Yi.

so that age and smoking are modelied freely as unordered categories. The function ¢ is sometimes
referred to as the ‘‘link”’ function, since it Jinks the expected value of the outcome of interest to a linear
function of predictors. For the logistic model, the function g is the logit link, g(x) = In[x/(1 — x)1, for the
odds-linear model g(x) = x/(1 — x), and for the purely additive model g is the identity, g{x) = x. The
linear logistic model is a standard component of GLIM (and other software), and simple macros are
available for fitting the other two links (Weinberg and Sandler, 1991; Wacholder, 1986).

The results of various model fits and various links are shown in Table 2, which gives scaled
“deviances” (- 2log(maximized likelihood)) to allow likelihood ratio testing. To avoid parameters
estimated at infinity, two 0 frequency values were replaced with .1. All results obtained by EM were
confirmed using the Newton—Raphson algorithm. The deviances have been corrected by subtracting
a constant from each, to set the value at full saturation to 0.0.

The fits of the fully saturated models are the same for the three link specifications, since the fitted
and observed numbers of cases are equal in each cell. The differences between the deviances for the
fully saturated models and those for the models that include only age and sex are more than 1,000
for each link specification. Under the correct model, this should be approximately chi-squared with
30 degrees of freedom if smoking were unrelated to risk of lung cancer. Clearly we cannot ignore
smoking. Note hu cnntract that adding sex to the model produces negligible improvement in fit.
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Table 2
Scaled deviances by link and model specifications

Link for model

Number of N
Factors in model parameters Logit Odds Identity
All factors including 40 0.0 0.0 0.0
interactions
Age
Smoking 8 437 208.1 217.1
Age
Sex
Smoking 9 40.7 206.5 215.6
Age
Sex 6 1,103.7 1,148.9 1,143.3
Age
Sex
Age-by-Sex 10 1,095.7 1,095.7 1,095.7

The logistic model suffers little loss of fit when reduced to just main effects for age and smoking (the
likelihood ratio statistic is 43.7, with 32 degrees of freedom). By contrast, the deviances for the other
two links are both greater than 200, indicating a very poor fit. Thus the additive models demand a
more complex specification, invelving interaction terms.

Parsimony thus argues strongly in favor of the eight-parameter multiplicative model for describing
the joint effect of smoking and age. The goodness of fit for this model was confirmed by noting that
the observed numbers of cases and controls agree closely with the resulting fitted numbers (not
shown), both within age/sex/smoking strata and for marginal totals within age/sex strata. By
contrast, when either of the other links is applied, the corresponding differences are huge.

Since the muitiplicative model gives the best fit for these data, we can compare results obtained
using maximum likelihood with those based on the maximum conditional pseudo-likelihood method
described by Breslow and Cain (1988) for two-stage case-control data, which also assumes a logistic
model, Results are shown in Table 3. Both the parameter estimates and their estimated standard
errors are nearly identical for the two methods. The relative risks for ex-, light, and heavy smoking
are 5.8, 21.5, and 49.4, respectively.

Table 3
Maximum likelihood estimates of coefficients under a
logistic model

Logistic Logistic
Parameter ML*  SEp;° MCPLS SEncpr?
Age 40-59 —5.73 16 ~-5.71 15
Age 60-64 —4.08 17 -4.06 .16
Age 65-69 —4.47 15 —4.46 15
Age 70-74 -4.26 15 —4.25 .14
Age 75-79 —4.01 .16 -3.99 15
Ex-smoking 1.77 17 1.75 17
Light smoking 3.07 .18 3.06 .18
Heavy smoking 3.90 15 3.88 15

# By maximum likelihood.

" Standard errors based on the observed information matrix.

© By maximum conditional pseudo-likelihood estimation.

9 Based on the consistent estimator given by Breslow and Cain
(1988, Proposition 2).

There remains the inevitable uncertainty in the absolute risk estimates based on case~control data
alone, because of the unknown relative probability of being identified for study for cases versus
controls (Weinberg and Wacholder, 1993); nonetheless relative risks can be estimated from this
model, as in a standard analysis. Thus we can estimate effects associated with “matching’’ factors.
For example, although age was a matching factor in the study of lung cancer, we can estimate the
relative risk for lung cancer for those 75-79 compared to those 65-69, as exp(—4.01 + 4.26) = 1.3
(see Table 3). (Comparisons for age grouns above and below 65 could nor. however, be made using
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these data, since the probabilities of being identified for possible recruitment as controls are different
for RDD and HCFA.) This kind of comparison would, of course, be most interesting under the
two-stage paradigm where the exposure of interest to the study is a first-stage variable.

5. Discussion

When a case—control study has employed complex sampling, maximum likelihood analysis can be
carried out despite incomplete data by applying the EM algorithm. Using this approach, we have
shown that one can compare the fits of additive and multiplicative models (or more general models)
to decide which best characterizes the interaction between the first-stage (e.g., matching) and
second-stage variables. Contrary to classical assumption (e.g., Thomas and Greenland, 1985), we
have shown that relative risks for first-stage variables can also be estimated. Thus, provided full use
is made of marginal data, one can both estimate relative risks associated with matching variables and
fit general models that allow for nonmultiplicative interactions.

In the example, the most parsimonious model for the combined effect of age and smoking on lung
cancer risk was muitiplicative, consistent with the possibility that the two factors operate at different
stages in a single multistage carcinogenic process (Siemiatycki and Thomas, 1982). Additivity would
have suggested biologically independent mechanisms. In this context, age could be considered a
proxy for cumulative exposure to lung carcinogens other than cigarette smoke. The analysis will
become more interesting when the exposures being analyzed are smoking and radon, and the timing
of exposure can be taken into account. Knowing the way risks from these exposures combine will
facilitate estimation of the public health impact of residential radon exposure and the potential
benefits to be gained from expensive amelioration programs.

Other methods have been proposed for two-stage sampling. Scott and Wild (1991) used maximum
likelihood in the context of stratified sampling, where the logistic model was assumed, but employed
Fisher scoring to maximize the observed data liketihood. They showed that maximum likelihood can
be much more efficient than the method of Fears and Brown (1986), but can be computationally
cumbersome. Flanders and Greenland (1991) adapted the pseudo-likelihood method developed by
Kalbfleisch and Lawless (1988) to nested case~control studies based on stratified two-stage sampling.

To simplify the description of the method, we assumed there were exactly two stages to the
sampling, namely a screening stage (or enumeration stage in the case of stratified sampling, or
record-retrieval stage in the case of two-stage sampling) followed by a stage where there is full
variable ascertainment for subsamples. The method has a natural generalization to more than two
levels of nesting on variable completeness. In the radon study, there will be three levels of data
completeness: some subjects will have only age and sex known, a subsample will have smoking
status known as well, and an even smaller subsample will be eligible to have radon measurements
made on their current and former residences. In the E step of the EM algorithm, one first goes from
the first stage to the second stage (in the example, estimating the age/sex/smoking/disease frequen-
cies), ignoring the third stage, as we have done. Next the second-stage estimated frequencies for
people with missing third-stage data are distributed among the levels of the third-stage variable (e.g.,
cumulative radon levels) according to the relative magnitudes of the fitted values. The M step, as
before, then fits the appropriate model to the estimated frequencies from the E step. In this way. the
three-factor (or more) likelihood analogous to (1) or (2) can be maximized.

Finally, the method described will not be universally applicable following a complex-sampling
design. The approach requires additional assumptions, for example, if there are eligibility require-
ments that have not been imposed on all subjects. Suppose, for example, that some subjects are
randomized for recruitment based on existing records, without first being contacted to confirm
eligibility. In this situation it might not be correct to assume data are missing at random, because
ineligible people have been included in the marginals. Here the investigator should consider applying
the offset-adjusted method described by Weinberg and Wacholder ( 1990). That method would still -
be valid, since with Bernoulli sampling the same probabilities have been imposed impartially on the
eligible and the ineligible.
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RESUME

Les études cas—témoin peuvent souvent étre rendues plus efficaces en utilisant des méthodes telles
p p ;
que l,apparlz\il_.-_‘ e Letrrmonn b manmtsmant randamicd Déchantillonnaee stratifié ou I’échantil-
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lonnage a deux niveaux. Ces méthodes ont en commun deux caractéristiques: (1) les variables dites
"‘de premier niveau'’ sont recueillies pour tous les sujets, tandis qu’un recueil complet des variables
n’est fait que pour un sous-échantillon et (2) la sélection des sujets de ce sous-échantilion en vue de
recueillir les variables ‘‘de deuxiéme niveau’’ dépend a la fois de I'existence de la maladie et des
variables de premier niveau. Comme ces variables influent sur la constitution des sous-échantillons,
les méthodes d’ analy se standards imposent un modéle multiplicatif des effets combinés d’une
variable de premier niveau et d’une variable de second niveau. Nous montrons qu’en utilisant des
méthodes pour données manquantes on peut obtenir des estimateurs du maximum de vraisemblance
pour les paramétres d'intérét, y compris ceux caractérisant les interactions entre variables de
premier et de deuxiéme niveaux. Les effets combinés peuvent alors étre modélisés de maniére
flexible, avec prise en compte simultanée de modeles additifs et multiplicatifs. L application de ces
méthodes aux données préliminaires d’une étude cas-témoin de la relation entre le cancer du
poumon et le sexe, 1'4ge et la consommation de tabac suggeére que ’age et la consommation de tabac
ont des effets multiplicatifs.
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